\(\int \sin (c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx\) [765]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 111 \[ \int \sin (c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {51 a^3 x}{8}+\frac {7 a^3 \cos (c+d x)}{d}-\frac {a^3 \cos ^3(c+d x)}{d}+\frac {4 a^3 \cos (c+d x)}{d (1-\sin (c+d x))}+\frac {19 a^3 \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a^3 \cos (c+d x) \sin ^3(c+d x)}{4 d} \]

[Out]

-51/8*a^3*x+7*a^3*cos(d*x+c)/d-a^3*cos(d*x+c)^3/d+4*a^3*cos(d*x+c)/d/(1-sin(d*x+c))+19/8*a^3*cos(d*x+c)*sin(d*
x+c)/d+1/4*a^3*cos(d*x+c)*sin(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2951, 2727, 2718, 2715, 8, 2713} \[ \int \sin (c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {a^3 \cos ^3(c+d x)}{d}+\frac {7 a^3 \cos (c+d x)}{d}+\frac {a^3 \sin ^3(c+d x) \cos (c+d x)}{4 d}+\frac {19 a^3 \sin (c+d x) \cos (c+d x)}{8 d}+\frac {4 a^3 \cos (c+d x)}{d (1-\sin (c+d x))}-\frac {51 a^3 x}{8} \]

[In]

Int[Sin[c + d*x]*(a + a*Sin[c + d*x])^3*Tan[c + d*x]^2,x]

[Out]

(-51*a^3*x)/8 + (7*a^3*Cos[c + d*x])/d - (a^3*Cos[c + d*x]^3)/d + (4*a^3*Cos[c + d*x])/(d*(1 - Sin[c + d*x]))
+ (19*a^3*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (a^3*Cos[c + d*x]*Sin[c + d*x]^3)/(4*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2951

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[1/a^p, Int[ExpandTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x]
)^(m + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p/2] && ((GtQ[m,
0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (GtQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))

Rubi steps \begin{align*} \text {integral}& = a^2 \int \left (-4 a-\frac {4 a}{-1+\sin (c+d x)}-4 a \sin (c+d x)-4 a \sin ^2(c+d x)-3 a \sin ^3(c+d x)-a \sin ^4(c+d x)\right ) \, dx \\ & = -4 a^3 x-a^3 \int \sin ^4(c+d x) \, dx-\left (3 a^3\right ) \int \sin ^3(c+d x) \, dx-\left (4 a^3\right ) \int \frac {1}{-1+\sin (c+d x)} \, dx-\left (4 a^3\right ) \int \sin (c+d x) \, dx-\left (4 a^3\right ) \int \sin ^2(c+d x) \, dx \\ & = -4 a^3 x+\frac {4 a^3 \cos (c+d x)}{d}+\frac {4 a^3 \cos (c+d x)}{d (1-\sin (c+d x))}+\frac {2 a^3 \cos (c+d x) \sin (c+d x)}{d}+\frac {a^3 \cos (c+d x) \sin ^3(c+d x)}{4 d}-\frac {1}{4} \left (3 a^3\right ) \int \sin ^2(c+d x) \, dx-\left (2 a^3\right ) \int 1 \, dx+\frac {\left (3 a^3\right ) \text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,\cos (c+d x)\right )}{d} \\ & = -6 a^3 x+\frac {7 a^3 \cos (c+d x)}{d}-\frac {a^3 \cos ^3(c+d x)}{d}+\frac {4 a^3 \cos (c+d x)}{d (1-\sin (c+d x))}+\frac {19 a^3 \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a^3 \cos (c+d x) \sin ^3(c+d x)}{4 d}-\frac {1}{8} \left (3 a^3\right ) \int 1 \, dx \\ & = -\frac {51 a^3 x}{8}+\frac {7 a^3 \cos (c+d x)}{d}-\frac {a^3 \cos ^3(c+d x)}{d}+\frac {4 a^3 \cos (c+d x)}{d (1-\sin (c+d x))}+\frac {19 a^3 \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a^3 \cos (c+d x) \sin ^3(c+d x)}{4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.80 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.13 \[ \int \sin (c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=\frac {(a+a \sin (c+d x))^3 \left (-204 (c+d x)+200 \cos (c+d x)-8 \cos (3 (c+d x))+\frac {256 \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}+40 \sin (2 (c+d x))-\sin (4 (c+d x))\right )}{32 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^6} \]

[In]

Integrate[Sin[c + d*x]*(a + a*Sin[c + d*x])^3*Tan[c + d*x]^2,x]

[Out]

((a + a*Sin[c + d*x])^3*(-204*(c + d*x) + 200*Cos[c + d*x] - 8*Cos[3*(c + d*x)] + (256*Sin[(c + d*x)/2])/(Cos[
(c + d*x)/2] - Sin[(c + d*x)/2]) + 40*Sin[2*(c + d*x)] - Sin[4*(c + d*x)]))/(32*d*(Cos[(c + d*x)/2] + Sin[(c +
 d*x)/2])^6)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.32 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.04

method result size
risch \(-\frac {51 a^{3} x}{8}+\frac {25 a^{3} {\mathrm e}^{i \left (d x +c \right )}}{8 d}+\frac {25 a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{8 d}+\frac {8 a^{3}}{d \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}-\frac {a^{3} \sin \left (4 d x +4 c \right )}{32 d}-\frac {a^{3} \cos \left (3 d x +3 c \right )}{4 d}+\frac {5 a^{3} \sin \left (2 d x +2 c \right )}{4 d}\) \(115\)
parallelrisch \(\frac {a^{3} \left (-408 d x \sin \left (\frac {d x}{2}+\frac {c}{2}\right )+408 d x \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+7 \cos \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )+\cos \left (\frac {9 d x}{2}+\frac {9 c}{2}\right )-160 \cos \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )-32 \cos \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )+\sin \left (\frac {9 d x}{2}+\frac {9 c}{2}\right )-7 \sin \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )-32 \sin \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )+160 \sin \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )-632 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )-280 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d \left (\sin \left (\frac {d x}{2}+\frac {c}{2}\right )-\cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\) \(165\)
derivativedivides \(\frac {a^{3} \left (\frac {\sin ^{7}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )-\frac {15 d x}{8}-\frac {15 c}{8}\right )+3 a^{3} \left (\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+3 a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (\sin ^{3}\left (d x +c \right )+\frac {3 \sin \left (d x +c \right )}{2}\right ) \cos \left (d x +c \right )-\frac {3 d x}{2}-\frac {3 c}{2}\right )+a^{3} \left (\frac {\sin ^{4}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )\right )}{d}\) \(212\)
default \(\frac {a^{3} \left (\frac {\sin ^{7}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )-\frac {15 d x}{8}-\frac {15 c}{8}\right )+3 a^{3} \left (\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+3 a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (\sin ^{3}\left (d x +c \right )+\frac {3 \sin \left (d x +c \right )}{2}\right ) \cos \left (d x +c \right )-\frac {3 d x}{2}-\frac {3 c}{2}\right )+a^{3} \left (\frac {\sin ^{4}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )\right )}{d}\) \(212\)
norman \(\frac {\frac {51 a^{3} x}{8}-\frac {20 a^{3}}{d}-\frac {51 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}-\frac {34 a^{3} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {69 a^{3} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}-\frac {34 a^{3} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {51 a^{3} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {153 a^{3} x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {51 a^{3} x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}-\frac {51 a^{3} x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}-\frac {153 a^{3} x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}-\frac {51 a^{3} x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}-\frac {4 a^{3} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {60 a^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {44 a^{3} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}\) \(282\)

[In]

int(sec(d*x+c)^2*sin(d*x+c)^3*(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-51/8*a^3*x+25/8*a^3/d*exp(I*(d*x+c))+25/8*a^3/d*exp(-I*(d*x+c))+8*a^3/d/(exp(I*(d*x+c))-I)-1/32*a^3/d*sin(4*d
*x+4*c)-1/4*a^3/d*cos(3*d*x+3*c)+5/4*a^3/d*sin(2*d*x+2*c)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.60 \[ \int \sin (c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {2 \, a^{3} \cos \left (d x + c\right )^{5} + 8 \, a^{3} \cos \left (d x + c\right )^{4} - 15 \, a^{3} \cos \left (d x + c\right )^{3} + 51 \, a^{3} d x - 56 \, a^{3} \cos \left (d x + c\right )^{2} - 32 \, a^{3} + {\left (51 \, a^{3} d x - 67 \, a^{3}\right )} \cos \left (d x + c\right ) + {\left (2 \, a^{3} \cos \left (d x + c\right )^{4} - 6 \, a^{3} \cos \left (d x + c\right )^{3} - 51 \, a^{3} d x - 21 \, a^{3} \cos \left (d x + c\right )^{2} + 35 \, a^{3} \cos \left (d x + c\right ) - 32 \, a^{3}\right )} \sin \left (d x + c\right )}{8 \, {\left (d \cos \left (d x + c\right ) - d \sin \left (d x + c\right ) + d\right )}} \]

[In]

integrate(sec(d*x+c)^2*sin(d*x+c)^3*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/8*(2*a^3*cos(d*x + c)^5 + 8*a^3*cos(d*x + c)^4 - 15*a^3*cos(d*x + c)^3 + 51*a^3*d*x - 56*a^3*cos(d*x + c)^2
 - 32*a^3 + (51*a^3*d*x - 67*a^3)*cos(d*x + c) + (2*a^3*cos(d*x + c)^4 - 6*a^3*cos(d*x + c)^3 - 51*a^3*d*x - 2
1*a^3*cos(d*x + c)^2 + 35*a^3*cos(d*x + c) - 32*a^3)*sin(d*x + c))/(d*cos(d*x + c) - d*sin(d*x + c) + d)

Sympy [F(-1)]

Timed out. \[ \int \sin (c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**2*sin(d*x+c)**3*(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.46 \[ \int \sin (c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {8 \, {\left (\cos \left (d x + c\right )^{3} - \frac {3}{\cos \left (d x + c\right )} - 6 \, \cos \left (d x + c\right )\right )} a^{3} + {\left (15 \, d x + 15 \, c - \frac {9 \, \tan \left (d x + c\right )^{3} + 7 \, \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{4} + 2 \, \tan \left (d x + c\right )^{2} + 1} - 8 \, \tan \left (d x + c\right )\right )} a^{3} + 12 \, {\left (3 \, d x + 3 \, c - \frac {\tan \left (d x + c\right )}{\tan \left (d x + c\right )^{2} + 1} - 2 \, \tan \left (d x + c\right )\right )} a^{3} - 8 \, a^{3} {\left (\frac {1}{\cos \left (d x + c\right )} + \cos \left (d x + c\right )\right )}}{8 \, d} \]

[In]

integrate(sec(d*x+c)^2*sin(d*x+c)^3*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/8*(8*(cos(d*x + c)^3 - 3/cos(d*x + c) - 6*cos(d*x + c))*a^3 + (15*d*x + 15*c - (9*tan(d*x + c)^3 + 7*tan(d*
x + c))/(tan(d*x + c)^4 + 2*tan(d*x + c)^2 + 1) - 8*tan(d*x + c))*a^3 + 12*(3*d*x + 3*c - tan(d*x + c)/(tan(d*
x + c)^2 + 1) - 2*tan(d*x + c))*a^3 - 8*a^3*(1/cos(d*x + c) + cos(d*x + c)))/d

Giac [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.50 \[ \int \sin (c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {51 \, {\left (d x + c\right )} a^{3} + \frac {64 \, a^{3}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1} + \frac {2 \, {\left (19 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 32 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 27 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 144 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 27 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 160 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 19 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 48 \, a^{3}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{4}}}{8 \, d} \]

[In]

integrate(sec(d*x+c)^2*sin(d*x+c)^3*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-1/8*(51*(d*x + c)*a^3 + 64*a^3/(tan(1/2*d*x + 1/2*c) - 1) + 2*(19*a^3*tan(1/2*d*x + 1/2*c)^7 - 32*a^3*tan(1/2
*d*x + 1/2*c)^6 + 27*a^3*tan(1/2*d*x + 1/2*c)^5 - 144*a^3*tan(1/2*d*x + 1/2*c)^4 - 27*a^3*tan(1/2*d*x + 1/2*c)
^3 - 160*a^3*tan(1/2*d*x + 1/2*c)^2 - 19*a^3*tan(1/2*d*x + 1/2*c) - 48*a^3)/(tan(1/2*d*x + 1/2*c)^2 + 1)^4)/d

Mupad [B] (verification not implemented)

Time = 16.69 (sec) , antiderivative size = 363, normalized size of antiderivative = 3.27 \[ \int \sin (c+d x) (a+a \sin (c+d x))^3 \tan ^2(c+d x) \, dx=-\frac {51\,a^3\,x}{8}-\frac {\frac {51\,a^3\,\left (c+d\,x\right )}{8}-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {51\,a^3\,\left (c+d\,x\right )}{8}-\frac {a^3\,\left (51\,c+51\,d\,x-58\right )}{8}\right )-\frac {a^3\,\left (51\,c+51\,d\,x-160\right )}{8}+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,\left (\frac {51\,a^3\,\left (c+d\,x\right )}{8}-\frac {a^3\,\left (51\,c+51\,d\,x-102\right )}{8}\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (\frac {51\,a^3\,\left (c+d\,x\right )}{2}-\frac {a^3\,\left (204\,c+204\,d\,x-102\right )}{8}\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {51\,a^3\,\left (c+d\,x\right )}{2}-\frac {a^3\,\left (204\,c+204\,d\,x-266\right )}{8}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\left (\frac {51\,a^3\,\left (c+d\,x\right )}{2}-\frac {a^3\,\left (204\,c+204\,d\,x-374\right )}{8}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (\frac {51\,a^3\,\left (c+d\,x\right )}{2}-\frac {a^3\,\left (204\,c+204\,d\,x-538\right )}{8}\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (\frac {153\,a^3\,\left (c+d\,x\right )}{4}-\frac {a^3\,\left (306\,c+306\,d\,x-342\right )}{8}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (\frac {153\,a^3\,\left (c+d\,x\right )}{4}-\frac {a^3\,\left (306\,c+306\,d\,x-618\right )}{8}\right )}{d\,\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^4} \]

[In]

int((sin(c + d*x)^3*(a + a*sin(c + d*x))^3)/cos(c + d*x)^2,x)

[Out]

- (51*a^3*x)/8 - ((51*a^3*(c + d*x))/8 - tan(c/2 + (d*x)/2)*((51*a^3*(c + d*x))/8 - (a^3*(51*c + 51*d*x - 58))
/8) - (a^3*(51*c + 51*d*x - 160))/8 + tan(c/2 + (d*x)/2)^8*((51*a^3*(c + d*x))/8 - (a^3*(51*c + 51*d*x - 102))
/8) - tan(c/2 + (d*x)/2)^7*((51*a^3*(c + d*x))/2 - (a^3*(204*c + 204*d*x - 102))/8) - tan(c/2 + (d*x)/2)^3*((5
1*a^3*(c + d*x))/2 - (a^3*(204*c + 204*d*x - 266))/8) + tan(c/2 + (d*x)/2)^6*((51*a^3*(c + d*x))/2 - (a^3*(204
*c + 204*d*x - 374))/8) + tan(c/2 + (d*x)/2)^2*((51*a^3*(c + d*x))/2 - (a^3*(204*c + 204*d*x - 538))/8) - tan(
c/2 + (d*x)/2)^5*((153*a^3*(c + d*x))/4 - (a^3*(306*c + 306*d*x - 342))/8) + tan(c/2 + (d*x)/2)^4*((153*a^3*(c
 + d*x))/4 - (a^3*(306*c + 306*d*x - 618))/8))/(d*(tan(c/2 + (d*x)/2) - 1)*(tan(c/2 + (d*x)/2)^2 + 1)^4)